

Motion and Forces in a Gravitational Field: Set 2						
Set	Number	Solution				
2	8	Throwing the balls fast requires that they be aimed only slightly above the cans. Throwing the balls slowly requires that the balls be aimed at some significant distance above the cans. In both cases if the balls are aimed a distance above the cans equal to the distance the balls will fall in the time taken to reach the cans, they will hit the cans.				
	9	Upwards part of her somersault: v = u + at $0 = 4.0 \text{ m s}^{-1} - (9.8 \text{ m s}^{-2} \times t)$ gives $t = 0.41 \text{ s}$ and $v^2 = u^2 + 2as$ gives $s = \frac{u^2}{2a} = \frac{(4.0 \text{ m s}^{-1})^2}{2 \times 9.8 \text{ m s}^{-2}} = 0.82 \text{ m}$ Downwards part of her somersault: $v^2 = u^2 + 2as$ so $v^2 = 2 \times a \times s_{total}$ gives $v = \sqrt{[2 \times 9.8 \text{ m s}^{-2} \times (0.82 \text{ m} + 1.1 \text{ m})]} = 6.13 \text{ m s}^{-1}$ and $v = u + at$ $6.13 \text{ m s}^{-1} = 0 + (9.8 \text{ m s}^{-2} \times t)$ gives $t = 0.63 \text{ s}$				
	10	total time of somersault = up time + down time = $0.41 \text{ s} + 0.63 \text{ s} = 1.04 \text{ s}$ v = 22.5 m s^{-1} s = 19.4 m g = 9.8 m s^{-2} v _V 10°				
		$v_{V} = 22.5 \sin 10^{\circ} = 3.90 \text{ m s}^{-1}$ $v_{H} = 22.5 \cos 10^{\circ} = 22.2 \text{ m s}^{-1}$ $t = \frac{s}{v_{H}} = \frac{19.4}{22.2} = 0.876s$ $s_{V} = ut + \frac{1}{2}at^{2}$ $= -3.9(0.876) + \frac{1}{2}(9.8)(0.876)^{2}$ $= 0.344 \text{ m}$ The ball arrives at the batter 0.344 m below the point from which it was pitched. That is 1.50-0.344 = 1.16 m above the ground.				
	11a	$v_{v} = -10.32 \text{ m s}^{-1}$ $u_{v} = -10.32 \text{ m s}^{-1}$ $g = 9.8 \text{ m s}^{-2}$ $t = ?$ $v_{v} = 18 \sin 35^{\circ} = 10.32 \text{ m s}^{-1}$				

Motion a	nd Force	s in a Gravitational Field: Set 2
Set	Number	Solution
2		$v_{\rm h} = 18 \cos 35^{\circ} = 14.74 \text{ m s}^{-1}$
		$t = \frac{v - u}{u}$
		a 10.32-(-10.32)
		$=$ $\frac{9.8}{9.8}$
		= 2.106s Time to make position $= 2.1 s$
	11b	Range = $s_h = v_h t = 14.74 \times 2.106 = 31 \text{ m}$
	12	The longest throw she can achieve requires a launch angle of 40°
		v_{v} $\frac{28.0 \text{ m s}^{-1}}{v_{v}}$
		$v_{y} = 28 \sin 40^{\circ} = 18.0 \mathrm{m s^{-1}}$
		$v_{\rm H} = 28\cos 40^\circ = 21.45{\rm ms^{-1}}$
		2v, 2(18.0)
		$t = \frac{1}{g} = \frac{1}{9.8} = 3.67s$
		$s_{H} = v_{H}t$
		= 21.45×3.67
		The longest throw she can achieve is 78.8 m
	13	$v_{\rm V}$ 110° 70° $v_{\rm H}$
		s = 3.0 m
		$u = -v = -2.16 \text{ m s}^{-1}$
		$a = 9.8 \text{ m s}^{-2}$ t = 2
		s = $ut + \frac{1}{2}at^2$
		$3.0 = -2.16t + \frac{1}{2}(9.8)t^2$
		$4.9t^2 - 2.16t - 3 = 0$
		$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$
		$\frac{2a}{-(-2.16)\pm\sqrt{(-2.16)^2-4(4.9)(-3)}}$
		$= \frac{2(4.9)}{2(4.9)}$
		$ = 1.03s $ $ = v_1 \times t = 0.79 \times 1.03 = 0.82 m $
		The diver will hit the water 0.82 m from end of board
	14	Time for the water to travel 160m:

. .

13

Niotion	and For	ces in a Gravitational Field: Set 2
Set	Number	Solution
2		$t = \frac{s_h}{s_h} = \frac{160m}{s_h} = 7.62s$
		$1 - \frac{1}{u_h} - \frac{1}{21 \text{ ms}^{-1}} - 7.023$
		Height to allow 7.62s travel time:
		$s = \frac{1}{2}at^2 = \frac{1}{2} \times 9.8 \text{ m s}^{-2} \times (7.62 \text{ s})^2 = 284.5 \text{ m}$
		Must release from a minimum height of 285 m in order to reach fire.
	15a	Resolve vertically: 11 m s ⁻¹ × sin 55° = 9.0 m s ⁻¹ upward Resolve horizontally 11 m s ⁻¹ × cos 55° = 6.3 m s ⁻¹ , then add forward motion of shotputter $6.3 \text{ m s}^{-1} + 2.8 \text{ m s}^{-1} = 9.1 \text{ m s}^{-1}$
	15b	Maximum height when v =0. $s = \frac{-u^2}{2a} = \frac{9}{2 \times -9.8}^2 = 4.1 \text{m}$, add height released from, $4.1 \text{m} + 2.4 \text{m} = 6.5 \text{m}$ 6.5 m
	15c	First need to determine t. $t = \frac{s-u}{t} = \frac{-2.4-9.0}{-9.8} = 1.16s$ Then use t to calculate horizontal distance $s = u \times t = 9.1 \text{ m s}^{-1} \times 1.16s = 18.9 \text{ m}$
	16a	$108 \text{ km h}^{-1} = 108 \times \frac{1000}{3600} = 30.0 \text{ m s}^{-1}$ u _h = u cos θ = 30.0 × cos 15° = 29.0 m s ⁻¹ and u _V = u sin θ = 30.0 × sin 15° = 7.76 m s ⁻¹
	16b	The acceleration is always 9.8 m s ⁻² acting vertically downwards. Or Since the direction of the car's path is always changing, then velocity (a vector) is always changing so there must always be an acceleration
	16c	Vertically, the velocity is zero Horizontally, the velocity (which remains constant) = 29.0 m s^{-1} So the resultant velocity = 29.0 m s^{-1} (\longrightarrow), to the right
	16d	Assuming she hits the ramp with her foot already fully down, then at point A. On hitting the ramp, gravity will slow her down so her speed at point B will be less. At point C her speed will be its minimum since there is no vertical speed. Air resistance (drag) will gradually reduce the horizontal speed, so the speed at D will be less than that at B and likewise, the speed at E will be less than that at point A. Ignoring air resistance, the speed at point A should equal the speed at point E.
	16e	Vertically (up to maximum point): Horizontally:
		s = ? $s = range = 38 m$
		$u = u \sin 15^{\circ}$ $u = u \cos 15^{\circ}$
		v = 0 t = 2x
		a = 9.8 m/s t = x
		need to find u
		using $v = u + at$ using $u = s/t$
		gives: $0 = u \sin 15^\circ - 9.8x$ gives $u \cos 15^\circ = 38/2x$
		and $x = u \sin 15/9.8$ and $x = 19/(u \cos 15)$
		combining both equations gives: $u \sin 15/9.8 = 10/(u \cos 15)$
		so $u^2 = 19 \times 9.8/(\sin 15 \times \cos 15) = 186.2 / 0.25 = 745$
		giving a minimum successful speed of 27.3 m s ⁻¹

EXPLOR	STA SCIENCE TEA OF WESTE	AVAA CHERS' ASSOCIATION ERN A USTRALIA VSICS STAGE 3
Motion a	nd Force	s in a Gravitational Field: Set 2
Set	Number	Solution
2	17a & b	F _{drag} W
		Hit point
	17c	
		$u_{V} = \frac{28 \text{ m/s}}{4}$ Horizontal motion: Time to reach the fence;- $t = \frac{s_{h}}{u_{h}} = \frac{64 \text{ m}}{28 \text{ m s}^{-1} \times \cos 15} = 2.37 \text{ s}$ Vertical motion: Maximum height reached:- $s = \frac{u^{2}}{2a} = \frac{\left(28 \text{ms}^{-1} \times \sin 35^{\circ}\right)^{2}}{2 \times 9.8 \text{ m s}^{-2}} = 13.16 \text{ m}$ Time to reach maximum height: $t = \frac{v - u}{a} = \frac{0 - \left(-28 \text{ m s}^{-1} \times \sin 35^{\circ}\right)^{2}}{9.8 \text{ m s}^{-2}} = 1.64 \text{ s}$ so, the time it has to fall before reaching the fence = 2.37 s - 1.64 s = 0.73 s Drop in height during 0.73 s:- $s = \frac{1}{2}at^{2} = \frac{1}{2} \times 9.8 \text{ m s}^{-2} ? (0.73s)^{2} = 2.61 \text{ m}$ so, the height above the ground as the ball reaches the fence = 13.16 m - 2.61 m = 10.55 m The ball will clear the fence by (10.55 m - 1.4 m) = 9.2 m.
	. 18	Vertically: $s = 0.45 \text{ m} - 1.35 \text{ m} = -0.9 \text{m}$ Vertically: $v = (2as)^{0.5} = (2 \times -9.8 \text{ m s}^{-2} \times -0.9 \text{ m})^{0.5} = 4.2 \text{ m s}^{-1}$ To find time $t = \frac{v - u}{a} = \frac{4.2 \text{ ms}^{-1}}{9.8 \text{ ms}^{-2}} = 0.43 \text{ s}$ Horizontally $s_h = u \times t = 83 \text{ m s}^{-1} \times 0.43 \text{ s} = 35.6 \text{ m}$ 35.6 m
	19	Horizontally: $t = \frac{s_h}{u_h}$ Subsitute for t into $s_v = u_v t + \frac{1}{2}at^2$ Leads to $1.2 = \frac{u \times 5.3 \times sin48}{u \times cos48} + -9.8 \times \frac{1}{2} \times \frac{5.3^2}{u^2 \cos 48^2}$ Multiply through by $u^2 \cos^2 48$, leads to $-2.098u^2 = -137.64$ $u = 8.10 \text{ m s}^{-1}$

EXPLOR	SCIENCE TEA OF WEST	ACHERS' ASSOCIATION CERN' A USTRALIA YSICS STAGE 3	「「「「「」」
Motion a	nd Force	es in a Gravitational Field: Set 2	
Set	Number	Solution	
	20a	v_{v} V_{H} v_{h} v	5 ⁻¹ 5 ⁻¹
		$s = \frac{u^2}{2a} = \frac{(9.66 \text{ m s}^{-1})^2}{2 \times 0.8 \text{ m s}^{-2}} = 4.76 \text{ m}$	
		since the ceiling is 6.0 m high, the ball will not hit it.	
	20b	time to reach maximum height:	
		$t = \frac{v - u}{a} = \frac{0 - (-9.66 \text{ m s}^{-1})}{9.8 \text{ m s}^{-2}} = 0.986 \text{ s}$ total flight time = 2 × t = 2 × 0.986 s = 1.972 s horizontal motion:	
		$s_h = u_h v_{total} = 8.70 \text{ m/s} + 1.9728 = 17.2 \text{ m}$ since the court is 18 m long, then the ball will land in the court	
	21	Long jump requires a long low jump, the jumper needs to generate a large horizontal speed but less vertical speed. Sprinters are good at large horizontal speeds.	